

Outline

marinescotland science

- The assessment problem
- Modelling concepts and model selection
- Why models?
- Cohort analysis
- Separable models
- Time series analysis
- MSY explained
- Ecosystem considerations
- The catch-option table

Concepts: The assessment problem marinescotland science

Concepts: Why models?
marinescotland science

Source: ©C BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=243043

Concepts: Why models?

marinescotland science

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=243043

Concepts: Why models? marinescotland science

Concepts: Why models?
marinescotland science

Concepts: Statistical model fitting science

- Regression analysis

Concepts: Statistical model fitting

- Regression analysis
- Find a line that passes as close to as many of the points as possible
- Summarises relationship as simply as possible
 analysis
Find a lin as possible

Concepts: The simplest fisheries model $\begin{gathered}\text { marinescotland } \\ \text { science }\end{gathered}$
Concepts: The simplest fisheries model $\begin{gathered}\text { marinescotland } \\ \text { science }\end{gathered}$

```
Fish are born
```

Fish grow

Fish die

Concepts: The simplest fisheries model marinescotland science

Concepts: Why models?

- Model:
- A way to simplify a system so we can understand it
- Trade off:
- Complex / realistic v. simple / understandable
- Mathematics:
- A language in which to write models down
- Model choice:
- Available data
- Purpose

Concepts: What is a fish stock?

Concepts: Definitions marinescotland science

Spawning stock biomass (SSB) B
Recruitment R
Fishing mortality F
Natural mortality M

Concepts: Definitions

Concepts: Definitions

Spawning stock biomass (SSB) B
marinescotland science

- The total weight of mature fish in the stock

Abundance $N \times$ Weight $W t$ (kg) $\times \quad$ Maturity Mat
Spawning stock biomass (SSB) B

Concepts: Definitions
marinescotland science

Concepts: Definitions
marinescotland science

Spawning stock biomass (SSB) B

- The total weight of mature fish in the stock

$$
S S B=\sum_{a} N_{a} \times W t_{a} \times M a t_{a}
$$

Recruitment R

- Abundance of fish entering the fishery
- Can depend on age (or size)
- Cod large enough to be caught by age 1
- Haddock appear in discards and bycatch by age 0 (towards the end of the year)
- Can also depend on location
- Saithe usually stay in fjords until age 3 or 4

Concepts: Definitions

marinescotland

 science

Concepts: The catch equation marinescotland science

- F. I. Baranov (1918)
- "On the Question of the Biological Basis of Fisheries", Nauchnye Issledovaniya Ikhtiologicheskii Instituta Izvestiya
- There are 100 fish, and 30 die
- Then the death rate is 30%
- Total mortality Z is just another way of writing death rate - Z is fishing mortality plus natural mortality

Concepts: The catch equation

marinescotland

 science- Fish die from both fishing AND natural causes:

Concepts: The catch equation marinescotland science

- We can write the proportion of all deaths that are due to fishing:

Concepts: The catch equation

marinescotland

 science- Suppose we also know the total number of fish:
 science
- If we know the proportion P that die in a year, then the number of dead fish is:

$P \times N$

Concepts: The catch equation

marinescotland

 science- Then the number that die due to fishing is:

$$
(F / Z) \times P \times N
$$

x

- Which we just call the catch C :

$$
C=\left(\frac{F}{Z}\right) \times P \times N
$$

Concepts: The catch equation

- IF we know catch and mortality, we can calculate abundance:

$$
N=\frac{C}{\left(\frac{F}{Z}\right) \times P}
$$

- But we can't easily estimate abundance and mortality at the same time!

Models: Cohort analysis

marinescotland

 scienceModels: Cohort analysis
marinescotland science

Models: Cohort analysis
marinescotland science

Models: Cohort analysis
marinescotland science

Reduction $=25000=71 \%$
So $Z=1.25$

Models: Cohort analysis
marinescotland science

Models: Cohort analysis

Models: Cohort analysis
marinescotland science

Models: Cohort analysis
marinescotland science

Models: Cohort analysis

- So if we know
- Catch
- Abundance
- Natural mortality
- Then we can calculate fishing mortality
- Except for the last year!
- But we don't know abundance...

Concepts: Exponential decline
marinescotland science

- A cohort is assumed to decline exponentially:

Concepts: Exponential decline

- Key simplifying assumption:
- Assume all catch taken at once
- Pope's cohort approximation

Models: Cohort analysis

marinescotland science

- So we can do an assessment with catch data only
- Pros:
- Many samples
- Cons
- Fishermen follow fish
- Some catch data may be missing
- Difficult to estimate some Fs
- Survey data can help to address these problems

Models: Cohort analysis
marinescotland science

- The key features of cohort analysis are:
- Work backwards from last year
- Add up catches
- Add fish removed by natural mortality
- "Tune" using surveys (if available)
- Results in an estimate of the number of fish there must have been at the start of the cohort
- No statistical parameter estimation
- Hence no estimates of uncertainty

Models: Cohort analysis

- Example: XSA applied to NS haddock (ICES 2013):

ssB

marinescotland

 scienceFishing mortality

Recruitment at age 0

Models: Separable model marinescotland science

- Regression analysis
- Find a line that passes as close to as many of the points as possible
- Summarises relationship as simply as possible

Models: Separable model
marinescotland science

- An analogy in fisheries is a separable model
- Two dimensional catch data (age and year)
- Find a surface that passes as close to as many of the points as possible
- Separable constraint:

$$
Z_{a, y}=s_{a} \times f_{y}
$$

- Enables uncertainty estimates

Models: Separable model
marinescotland science

- Example: SURBAR applied to NS lemon sole

Concepts: The Kalman filter
marinescotland science

- Rudolf Kálmán (1960): modelling rocket trajectories
- Rudolf Kálmán (1960): modelling rocket trajectories

Prediction

Concepts: The Kalman filter
marinescotland science

- Rudolf Kálmán (1960): modelling rocket trajectories

Concepts: The Kalman filter

marinescotland

 science- Rudolf Kálmán (1960): modelling rocket trajectories

Models: Time series models

marine scotland

 science- Example: SAM applied to North Sea cod

Concepts: MSY

- Maximum sustainable yield (MSY)
- Assumes equilibrium (fishing mortality, growth etc. all unchanging)
- Can be very uncertain
- Can be difficult to fish all stocks at $\mathrm{F}(\mathrm{msy})$
- Different from maximum economic yield (MEY)

Concepts: MSY marinescotland science

- Maximum sustainable yield (MSY)
- Used as the basis of ICES advice in the absence of management plans
- Fishing at F (msy) can lead to stock reductions, so:
- Calculation modified by risk considerations

Concepts: Ecosystem considerations marinescotland science

- Ecosystem notes in ICES WG reports
- WGMIXFISH summaries:
- Otherwise not much account taken yet of ecosystems effects or impacts in stock assessment

The last stage: the catch-option table

marinescotland

 science| Rationale | $\begin{aligned} & \text { Total } \\ & \text { catch } \\ & 2017 \end{aligned}$ | Wanted catch 2017 | Unwanted catch 2017 | IBC 2017 | Basis | Total F 2017 | $\begin{aligned} & \text { F(land) } \\ & 2017 \end{aligned}$ | $\begin{aligned} & \text { F(disc) } \\ & 2017 \end{aligned}$ | $\begin{aligned} & \text { F(IBC) } \\ & 2017 \end{aligned}$ | $\begin{gathered} \text { SSB } \\ 2018 \end{gathered}$ | $\begin{aligned} & \text { \% SSB } \\ & \text { change } \end{aligned}$ | \% TAC change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MSY | 65.442 | 57.996 | 7.446 | 0.000 | New F(msy) estimate | 0.260 | 0.214 | 0.046 | 0.000 | 282 | -23\% | -10\% |
| Mngmnt plan | 74.372 | 65.895 | 8.477 | 0.000 | MP target F | 0.300 | 0.246 | 0.054 | 0.000 | 273 | -25\% | 3\% |
| IBC only | 0.000 | 0.000 | 0.000 | 0.000 | No HC fishery | 0.000 | 0.000 | 0.000 | 0.000 | 343 | -6\% | -100\% |
| Other options | 56.150 | 49.771 | 6.379 | 0.000 | 0.75 * F(sq) | 0.220 | 0.181 | 0.039 | 0.000 | 290 | -20\% | -22\% |
| | 72.785 | 64.491 | 8.294 | 0.000 | Fsq | 0.293 | 0.241 | 0.052 | 0.000 | 275 | -24\% | 1\% |
| | 88.494 | 78.379 | 10.115 | 0.000 | 1.25 * (sq) | 0.366 | 0.301 | 0.065 | 0.000 | 260 | -28\% | 22\% |
| | 64.311 | 56.995 | 7.316 | 0.000 | 15% TAC decrease (full) | 0.255 | 0.209 | 0.046 | 0.000 | 283 | -22\% | -15\% |
| | 75.253 | 66.674 | 8.579 | 0.000 | Rollover TAC (full) | 0.304 | 0.250 | 0.054 | 0.000 | 273 | -25\% | 0\% |
| | 85.739 | 75.945 | 9.795 | 0.000 | $\begin{gathered} 15 \% \text { TAC } \\ \text { increase (full) } \end{gathered}$ | 0.353 | 0.290 | 0.063 | 0.000 | 263 | -28\% | 15\% |
| | 78.723 | 69.743 | 8.980 | 0.000 | $\mathrm{F}(\mathrm{pa})$ | 0.320 | 0.263 | 0.057 | 0.000 | 269 | -26\% | 9\% |

Example: Northern Shelf haddock, October 2016

Summary

Thanks... marinescotland science

- Models make complex systems understandable
- Trade-off between simplicity and realism
- Many approaches to stock assessment exist
- Often driven by data availability (but not always)
- The key end result (in ICES) is the catch-option table
- Which is where managers take over!

