

Outline

marine scotland science

- The assessment problem
- Modelling concepts and model selection
 - Why models?
 - Cohort analysis
 - Separable models
 - Time series analysis
- MSY explained
- Ecosystem considerations
- The catch-option table

Mean F

Source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=243043

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=243043

Concepts: Why models?

$$B_{y+1} = B_y - M_y + R_y + G_y$$

Concepts: Why models?

- Model:
 - A way to simplify a system so we can understand it
- Trade off:
 - Complex / realistic v. simple / understandable
- Mathematics:
 - A language in which to write models down
- Model choice:
 - Available data
 - Purpose

• The total weight of mature fish in the stock

Abundance N x Weight Wt (kg) x Maturity Mat

marine scotland science

$$SSB = \sum_{a} N_{a} \times Wt_{a} \times Mat_{a}$$

Concepts: Definitions

marine scotland science

Recruitment R

- Abundance of fish entering the fishery
- Can depend on age (or size)
 - Cod large enough to be caught by age 1
 - Haddock appear in discards and bycatch by age 0 (towards the end of the year)
- Can also depend on location
 - Saithe usually stay in fjords until age 3 or 4

- F. I. Baranov (1918)
 - "On the Question of the Biological Basis of Fisheries", Nauchnye Issledovaniya Ikhtiologicheskii Instituta Izvestiya
- There are 100 fish, and 30 die
- Then the death rate is 30%
- Total mortality Z is just another way of writing death rate
 - Z is fishing mortality plus natural mortality

Total = Fishing

Concepts: The catch equation

marine scotland science

• We can write the proportion of all deaths that are due to fishing:

F \overline{Z}

marine scotland science

• Suppose we also know the total number of fish:

Concepts: The catch equation

marine scotland science

• If we know the proportion P that die in a year, then the number of dead fish is:

 $P \times N$

marine scotland science

• Then the number that die due to fishing is:

Concepts: The catch equation

marine scotland science

• Which we just call the catch C:

marine scotland science

• IF we know catch and mortality, we can calculate abundance:

$$N = \frac{C}{\left(\frac{F}{Z}\right) \times P}$$

• But we can't easily estimate abundance and mortality at the same time!

Models: Cohort analysis

Models: Cohort analysis

Models: Cohort analysis

Models: Cohort analysis

- So if we know
 - Catch
 - Abundance
 - Natural mortality
- Then we can calculate fishing mortality
 - Except for the last year!
- But we **don't** know abundance...

Concepts: Exponential decline

marine scotland science

• A cohort is assumed to decline exponentially:

Concepts: Exponential decline

- Key simplifying assumption:
 - Assume all catch taken at once
 - Pope's cohort approximation

Models: Cohort analysis

marine scotland science

- So we can do an assessment with catch data only
- Pros:
 - Many samples
- Cons
 - Fishermen follow fish
 - Some catch data may be missing
 - Difficult to estimate some Fs
- Survey data can help to address these problems

Models: Cohort analysis

- The key features of cohort analysis are:
 - Work backwards from last year
 - Add up catches
 - Add fish removed by natural mortality
 - "Tune" using surveys (if available)
 - Results in an estimate of the number of fish there must have been at the start of the cohort
- No statistical parameter estimation
 - Hence no estimates of uncertainty

Models: Separable model

marine scotland science

- An analogy in fisheries is a **separable model**
 - Two dimensional catch data (age and year)
 - Find a surface that passes as close to as many of the points as possible
 - Separable constraint:

$$Z_{a,y} = s_a \times f_y$$

- Enables uncertainty estimates

Models: Separable model

- marine scotland science
- Example: SURBAR applied to NS lemon sole

Concepts: The Kalman filter

marine scotland science

• Rudolf Kálmán (1960): modelling rocket trajectories

Concepts: The Kalman filter

• Rudolf Kálmán (1960): modelling rocket trajectories

marine scotland science

marine scotland science

• Example: SAM applied to North Sea cod

Concepts: MSY

- Maximum sustainable yield (MSY)
 - Assumes equilibrium (fishing mortality, growth etc. all unchanging)
 - Can be very uncertain
 - Can be difficult to fish all stocks at F(msy)
 - Different from maximum economic yield (MEY)

Concepts: MSY

- Maximum sustainable yield (MSY)
 - Used as the basis of ICES advice in the absence of management plans
 - Fishing at F(msy) can lead to stock reductions, so:
 - Calculation modified by risk considerations

The last stage: the catch-option table

marine scotland science

Rationale	Total catch 2017	Wanted catch 2017	Unwanted catch 2017	IBC 2017	Basis	Total F 2017	F(land) 2017	F(disc) 2017	F(IBC) 2017	SSB 2018	% SSB change	% TAC change
MSY	65.442	57.996	7.446	0.000	New F(msy) estimate	0.260	0.214	0.046	0.000	282	-23%	-10%
Mngmnt plan	74.372	65.895	8.477	0.000	MP target F	0.300	0.246	0.054	0.000	273	-25%	3%
IBC only	0.000	0.000	0.000	0.000	No HC fishery	0.000	0.000	0.000	0.000	343	-6%	-100%
Other options	56.150	49.771	6.379	0.000	0.75 * F(sq)	0.220	0.181	0.039	0.000	290	-20%	-22%
	72.785	64.491	8.294	0.000	Fsq	0.293	0.241	0.052	0.000	275	-24%	1%
	88.494	78.379	10.115	0.000	1.25 * F(sq)	0.366	0.301	0.065	0.000	260	-28%	22%
	64.311	56.995	7.316	0.000	15% TAC decrease (full)	0.255	0.209	0.046	0.000	283	-22%	-15%
	75.253	66.674	8.579	0.000	Rollover TAC (full)	0.304	0.250	0.054	0.000	273	-25%	0%
	85.739	75.945	9.795	0.000	15% TAC increase (full)	0.353	0.290	0.063	0.000	263	-28%	15%
	78.723	69.743	8.980	0.000	F(pa)	0.320	0.263	0.057	0.000	269	-26%	9%

Example: Northern Shelf haddock, October 2016

Summary

marine scotland science

Thanks...

- Models make complex systems understandable
- Trade-off between simplicity and realism
- Many approaches to stock assessment exist
 - Often driven by data availability (but not always)
- The key end result (in ICES) is the catch-option table
 - Which is where managers take over!

