Stock Assessment and Modelling Overview

Dr Neil Campbell Marine Scotland Science

- Why assess stocks?
- Why use models?
- Defining some terms (SSB, F, recruitment, etc.)
- What is a stock?
- What are the different types of assessment in use?
- How do we use assessment results to guide management?

UN Fish Stocks Agreement, Article 5

- Ensure long-term sustainability of shared fish stocks
- Ensure measures based on best scientific evidence available
- Apply the precautionary approach
- Assess the impacts of fishing and other human activities on target stocks and other species in the same ecosystem

Concepts: Why assess stocks?

Inform discussion:

- Catch options
- Policy objectives.

Informal meeting of ministers for agriculture and fisheries (iAGRIFISH). Round table. Estonian Presidency, 2017

Concepts: Why models?

marinescotland science

Source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=243043

Concepts: Why models?

marinescotland science

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=243043

Concepts: Why models?

Concepts: Why models?

- Model:
- A way to simplify a system so we can understand it
- Trade off:
- Complex / realistic v. simple / understandable
- Mathematics:
- A language in which to write models down
- Model choice:
- Available data
- Purpose

Concepts: Definitions

Spawning stock biomass (SSB) B

Recruitment R
Fishing mortality F

Abundance N

Natural mortality M

Concepts: Definitions

Spawning stock biomass (SSB) B

- The total weight of mature fish in the stock
Abundance $N \times \quad$ Weight $W t$ (kg) $\times \quad$ Maturity Mat

Concepts: Definitions

Spawning stock biomass (SSB) B

North Sea haddock

Weight Wt (kg)
Maturity Mat

- The total weight of mature fish in the stock

Abundance	$N \quad x$	Weight Wt (kg)	X	Maturity Mat
Age	Abundance ('000)	Average Weight (Kg)	Maturity	Y Total (T)
1	10000	0.120	0.10	120
2	3000	0.250	0.50	375
3	1000	0.310	0.95	295
4	500	0.350	1.00	175
			SSB $=$	965

Recruitment R

- Abundance of fish entering the fishery
- Can depend on age (or size)
- Cod large enough to be caught by age 1
- Haddock appear in discards and bycatch by age 0 (towards the end of the year)
- Can also depend on location
- Saithe usually stay in fjords until age 3 or 4

Concepts: Definitions

marinescotland science

Fishing mortality F

Concepts: Statistical model fitting

marinescotland
 science

Concepts: Statistical model fitting

marinescotland

- Regression analysis
- Find a line that passes as close to as many of the points as possible
- Summarises relationship as simply as possible

Concepts: The simplest fisheries model

Fish are born

Fish grow

Fish die

Concepts: The simplest fisheries model

marinescotland science

Biomass
this year
:---
last year
:---
survivors

Concepts: The simplest fisheries model

Biomass
this year
:---
last year
:---
survivors

- Emigration + Immigration ?

Concepts: What is a fish stock?

marinescotland

- Fisheries Data
- Genetics
- Parasites
- Shape
- Composition
- Tagging

Example: Herring west of UK and Ireland

marinescotland science

Example: Herring west of UK and Ireland

marinescotland

 science

Example: Herring west of UK and Ireland

marinescotland science

Type of assessment

- Catch trends
- Survey trends
- Survey-based assessment
- Analytical assessment

Catch trends

- Assessment is based on patterns in landings
- CPUE where effort data available
- Pros
- Simple, cheap, easy to understand
- Can flag up where things are going wrong
- Cons
- Not useful as a predictive tool

Catch trends - an example
marinescotland science

- Red Gurnard in the Northeast Atlantic (ICES Divs. 3-8)

Catch trends - an example

- Red Gurnard in the Northeast Atlantic (ICES Divs. 3-8)

Survey trends

- Assessment is based on patterns in surveys
- Pros
- Simple, still quite cheap, easy to understand
- Can flag up where things are going wrong
- Cons
- May not reflect what stakeholders are seeing
- Changes in survey design can disrupt time series

Survey trends - an example
marinescotland science

- Nephrops in Div 4, Functional Unit 7 (Fladen, North Sea)

Survey trends - an example

marinescotland

- Nephrops in Div 4, Functional Unit 7 (Fladen, North Sea)

Survey trends - an example

marinescotland science

- Nephrops in Div 4, Functional Unit 7 (Fladen, North Sea)

Survey trends - an example

- Nephrops in Div 4, Functional Unit 7 (Fladen, North Sea)

Area of mud X Density of burrows

28153 km²
$0.16 \mathrm{~m}^{-2}$
$=4.45$ billion

Survey trends - an example

- Nephrops in Div 4, Functional Unit 7 (Fladen, North Sea)

Population X Target Harvest Rate X Average Weight

$$
4.45 \text { billion }
$$

$$
\begin{aligned}
& 7.5 \% \\
& 39.75 \mathrm{~g} \\
& =13350 \mathrm{t}
\end{aligned}
$$

Survey trends - an example

- Nephrops in Div 4, Functional Unit 7 (Fladen, North Sea)

Survey trends - an example

- Nephrops in Div 4, Functional Unit 7 (Fladen, North Sea)

Norway lobster (Nephrops norvegicus) in Division 4.a, Functional Unit 7 (northern North Sea, Fladen Ground)

ICES advice on fishing opportunities

Please note: The present advice replaces the advice given in June 2018 for catches in 2019.
ICES advises that when the proposed EU multiannual plan (MAP) for the North Sea is applied, catches in 2019 that correspond to the F ranges in the MAP are between 11596 tonnes and 13178 tonnes. The entire range is considered precautionary when applying the ICES advice rule.

- F. I. Baranov (1918)
- "On the Question of the Biological Basis of Fisheries", Nauchnye Issledovaniya Ikhtiologicheskii Instituta Izvestiya
- There are 100 fish, and 30 die
- Then the death rate is 30%
- Total mortality Z is just another way of writing death rate
-Z is fishing mortality plus natural mortality

Concepts: The catch equation

- Fish die from both fishing AND natural causes:

$\begin{array}{cl}Z & =F \\ \text { Total } & =\text { Fishing }\end{array}$
$+$
M
Natural

Concepts: The catch equation

- We can write the proportion of all deaths that are due to fishing:

Concepts: The catch equation

- Suppose we also know the total number of fish:

N

Concepts: The catch equation

- If we know the proportion P that die in a year, then the number of dead fish is:

$$
P \times N
$$

Concepts: The catch equation

- Then the number that die due to fishing is:

Concepts: The catch equation

- Which we just call the catch C :

$$
C=\left(\frac{F}{Z}\right) \times P \times N
$$

- IF we know catch and mortality, we can calculate abundance:

$$
N=\frac{C}{\left(\frac{F}{Z}\right) \times P}
$$

- But we can't easily estimate abundance and mortality at the same time!

Models: Cohort analysis

Models: Cohort analysis

Models: Cohort analysis

Models: Cohort analysis

Reduction $=25000=71 \%$
So $\mathrm{Z}=1.25$

Models: Cohort analysis

Models: Cohort analysis

Total mortality Z							
Age							
Year	1	2	3	4	5	6	7
2004	1.20						
2005		1.46					
2006			1.25				
2007				1.20			
2008					1.10		
2009						0.69	
2010							0.69

Models: Cohort analysis

Models: Cohort analysis

Models: Cohort analysis

- So if we know (or make some assumptions about...!)
- Catch
- Abundance
- Natural mortality
- Then we can calculate fishing mortality
- Except for the last year!
- But we don't know abundance...

Concepts: Exponential decline

- A cohort is assumed to decline exponentially:

$$
N_{a+1, t+1}=N_{a, t} \exp \left(-Z_{a, t}\right)
$$

Concepts: Exponential decline

- Key simplifying assumption:
- Assume all catch taken at once
- Pope's cohort approximation

Models: Cohort analysis

- So we can do an assessment with catch data only
- Pros:
- Many samples
- Cons
- Fishermen follow fish
- Some catch data may be missing
- Difficult to estimate some Fs
- Survey data can help to address these problems

Models: Cohort analysis

- The key features of cohort analysis are:
- Work backwards from last year
- Add up catches
- Add fish removed by natural mortality
- "Tune" using surveys (if available)
- Results in an estimate of the number of fish there must have been at the start of the cohort
- No statistical parameter estimation
- Hence no estimates of uncertainty

Models: Cohort analysis

marinescotland science

- Example: XSA applied to NS haddock (ICES 2013):

Models: Separable model

marinescotland

science

- Regression analysis
- Find a line that passes as close to as many of the points as possible
- Summarises relationship as simply as possible

Models: Separable model

- An analogy in fisheries is a separable model
- Two dimensional catch data (age and year)
- Find a surface that passes as close to as many of the points as possible

Mortality $(Z)=$ Age effect X Year effect

- Enables uncertainty estimates

Models: Separable model

marinescotland science

Models: Separable model

- Example: SURBAR applied to NS lemon sole

Reference Points

Stock assessment

- State of the stock
- Fishing mortality

But what should we do with this information?!

Limit reference points - situations to be avoided

Target reference points - situations which give maximum outputs

Limit Reference Points

	SSB below reference
level	

SSB above reference level

Stock is not overfished but is being exploited unsustainably
Stock is not overfished, nor is overfishing occurring

Limit Reference Points

marinescotland science

Limit Reference Points

marinescotland

science

Concepts: $\mathrm{F}_{\text {max }}$

marinescotland science

Fishing 'activity'

Concepts: $\mathrm{F}_{0.1}$

marinescotland science

Concepts: MSY

marinescotland

science

Concepts: MSY

marinescotland science

Concepts: MSY

- Maximum sustainable yield (MSY)
- Assumes equilibrium (fishing mortality, growth etc. all unchanging)
- Can be very uncertain
- Can be difficult to fish all stocks at $F_{\text {msy }}$
- Different from maximum economic yield (MEY)

Concepts: MSY

- Maximum sustainable yield (MSY)
- Used as the basis of ICES advice in the absence of management plans
- Fishing at $F_{\text {msy }}$ can lead to stock reductions, so:
- Calculation modified by risk considerations

The last stage: the catch-option table

marinescotland

Table 3
Blue whiting in subareas 1-9, 12, and 14. Annual catch scenarios. All weights are in tonnes.

Basis	$\begin{aligned} & \text { Total catch } \\ & \text { (2019) } \\ & \hline \end{aligned}$	$\mathrm{F}_{\text {total }}(2019)$	SSB (2020)	$\begin{gathered} \text { \% SSB } \\ \text { change } * \end{gathered}$	\% Catch change **	\% Advice change ${ }^{* * *}$
ICES advice basis						
Long-term management strategy ($\mathrm{F}=\mathrm{F}_{\mathrm{MSY}}$)	1143629	0.32	3752236	-13	-33	-18
Other scenarios						
MSY approach: $\mathrm{F}_{\mathrm{MSY}}$	1143629	0.32	3752236	-13	-33	-18
$\mathrm{F}=0$	0	0	4850444	12	-100	-100
F_{pa}	1725357	0.53	3201021	-26	1	24
Flim	2476742	0.88	2499796	-42	45	79
SSB (2020) $=\mathrm{B}_{\text {lim }}$	3587714	1.75	1500171	-65	110	159
SSB (2020) $=\mathrm{B}_{\mathrm{pa}}$	2747920	1.04	2250714	-48	60	98
SSB (2020) $=$ MSY $\mathrm{B}_{\text {trigger }}$	2747920	1.04	2250714	-48	60	98
$\mathrm{F}=\mathrm{F}_{2018}$	1528542	0.45	3386825	-22	-11	10
SSB (2020) = SSB (2019)	544778	0.140	4325259	0	-68	-61
Catch (2019) = Catch (2018)	1712874	0.53	3212778	-26	0	23
$\begin{aligned} & \text { Catch (2019) }=\text { Catch (2018) }-20 \\ & \% \end{aligned}$	1370342	0.40	3536701	-18	-20	-1
$\begin{aligned} & \text { Catch (2019) = Advice (2018) -20 } \\ & \% \end{aligned}$	1109872	0.31	3784400	-13	-35	-20

* SSB 2020 relative to SSB 2019.
** Catch in 2019 relative to catch in 2018 (1 712 874t, ICES estimate).
***Advice value for 2019 relative to advice value for 2018.

The advised catch is lower than last year's advice due to the low recruitment in 2017 and 2018 and decreasing biomass in addition to a downwards revision in the estimate of SSB in recent years.

- Many approaches to stock assessment exist
- Often driven by data availability (but not always)
- Models make complex systems understandable
- Trade-off between simplicity and realism
- The key end result (in ICES) is the catch-option table
- Which is where managers take over!

Thanks...

marinescotland science

