Sustainable Fisheries Education Programme: Introduction to Sustainable Fishing (\#ISF2020)

Stock assessment masterclass

$29^{\text {th }}$ January 2020

London Hilton and Billingsgate Market

Dr Carl O'Brien CBE
Defra Chief Fisheries Science Adviser UK Delegate to ICES/ICES Vice-president

3象 6
Centre for Environment Fisheries \& Aquaculture Science

Modelling stocks:

-What is a fish stock?
>SFEP YouTube video
-How are they assessed?
>SFEP YouTube video

- Modelling straddling stocks
- Modelling shellfish - issues and problems

ICES' sheets and reference points:

- MSY, $\mathrm{F}_{\text {lim }}$, SSB B $\mathrm{B}_{\text {lim }}$ etcetera - demystifying acronyms
- ICES' sheets - finding what you need, reading what you find
- Shared stocks, mixed fisheries and ecosystem approach to management

Diverse - over 300 shelf species

~ 20 species give over 85% value

Fish (and shellfish) - Cefas

Context of fisheries

 assessments and management advisory processCefas

What is a fish stock?

A short animation describing why fisheries scientists need to define stocks in the process of stock assessments.

- Link: https://youtu.be/YWNe951bucY

Time: 4:43

- Species
- Populations = stocks
- TACs ~~ stocks
- Sometimes not even species; e.g. rays
- TACs by ICES' areas

Fish stocks

 \& Cefas
Different models for assessment and advice:

-Availability and quality of data

-Uncertainty

Cefas

Stock assessment levels:

Purpose of assessment: estimation of ...

- Stock status
(Spawning stock biomass)
- Exploitation rate (Fishing mortality)
- Reference points
- Less

Assessment type

1: Quantitative: analytical

2: Qualitative: analytical

3: Survey trends

4: Catch only

5: Landings only

6: By-catch fishery

Advice type

Maximum
Sustainable Yield

Data-limited MSY proxy

Precautionary approach

Start here: then move clockwise

DATA COLLECTION MARKET SAMPLING, OBSERVERS, RV SURVEYS

From surveys and sampling/models/stock assessment/advice/ negotiated international management/TACs \& quotas/local management

Process overview: from science to management f.

But we are getting ahead of ourselves ...

Cefas

Why do we need to assess fish stocks?

A short animation explaining how and why fisheries scientists measure fish stocks, and the role played by the fishing industry to ensure these assessments are accurate.

- Link: https://youtu.be/In72Jj6dGNA

Time: 4:39

Why assess fish stocks?

- To assess whether the exploitation rate is too high or too low in relation to management objectives for the fisheries exploiting them and whether the rate is sustainable in the long term.
- To assess whether there are sufficient mature fish in the sea to allow the stock to replace itself over time.
- To examine trends over time.
- To forecast future catches.
- Overall - to (try to) manage the exploitation rate.

Stock assessment is easy?

Data rich stock with an accepted analytical assessment and forecast for MSY

- Cohort analysis

Cefas

Biological data on catch:

Routine - Length, weight, sex ratio, maturity stage.

Then age determination from ear bones (otoliths).

The End Game

How many fish of each age group were caught - for use in stock assessment

Numbers-at-age matrix: catch
2013 year-class: recruits in 2014

Cefas

Russell proposed the following equation for the biomass of a population:

$$
S_{2}=S_{1}+(A+G)-(C+M)
$$

where
$\mathbf{S}_{\boldsymbol{t}}$ - biomass of the population at time t

A - mass of new fish growing into the fishable component of the population (recruits)
G - increase in mass of the new recruits plus other fish already of a fishable size

C - mass caught
\mathbf{M} - mass of fish that died naturally

Cefas

Timing of Assessments and Advice				
	2019	2020	2021	
Fisheries Data				
Assessment				
Catch Predictions				
Advice				
		4		
		Assessm	Working	Group in 2020,
		assesses	te of sto	
		predicts	and ca	h in 2020 and 2021

Centre for Environment Fisheries \& Aquaculture Science

From assessments to advice

This produces a stock assessment

Cefas

To provide the advice for next year's catches

We project forward with our best knowledge (maturity, growth, recruits, impact of fishing gear, natural death etc) across a range of fishing scenarios.

Cefas

Brief consideration of shellfish: generally, data-limited

Cefas

Shellfish fishery management

$$
\stackrel{\star^{\star \star} \star \star}{\star}{ }_{\star \star \star \star^{\star}}^{\star}
$$

CFP regards them as a National competence

- EU MLS
- Western Waters Effort
- \quad 15m scallop dredge \& crab potters

UK legislation since at least 1877
Most recent 2018 (England only)

- MLS
- Technical

Conservation Measures

UK management boundaries

DAS

Measures apply to all UK

vessels
 MLS \& Tech Con

IFCAs

Evolved from Sea Fishery
Committees
Jurisdiction to 6nm
Local Authority funded

- MLS
- Gear specification
- Effort restriction
- Time \& space restriction

IFCA Boundaries

Stock boundaries

ICES CIEM

- International assessments
- boundary definitions (\& adjustments)
- Nephrops only

- biology
- hydrography
- fisheries
- existing management
- data availability

Cefas (6) \& Marine Scotland (12) = 18 Crab assessment units

Scallop assessment

- Scotland 7 areas
- Age based
- Long-term monitoring
- England 9 areas (6 assessed)
- Direct biomass estimate
- 2 years monitoring

- Sedentary
- Specific habitats
- Local growth rates
- Large scale recruit distribution
- International fisheries
- Joint assessment programme Industry/Defra/Cefas
- Started 2016
- 1 st Assessment 2018
- Biomass \& harvest rate estimates
- MSY proxies to be developed
- Dredge survey (vessel paid by industry)
- Biological sampling - part industry

Next challenges

- Highly migratory
- Live 1-2 years
- Very fast growth
- Die after spawning
- Management objectives?
- Low discard survival
- International fisheries
- Some targeting
- Previous ICES' interest

- Sedentary
- No larval dispersal
- Very local growth rates
- Domestic fisheries (over

6 nm)

- IFCA interest
- Age determination possible

New solutions

Better assessments = more data! Industry often the best platform

Use of technology

- Minimise time impact
- Maximise utility to fisher \& science

ICES' sheets and reference points

- Measure of the proportion of fish taken from a stock each year by fishing activity
- Fishing mortality (F)
- Total weight of a species population capable of reproducing
- Spawning stock biomass (SSB)
- Number of fish becoming available to a fishery stock in a year
- Recruitment (R)
- Number of any one annual spawning (Year-class)

Terminology

Fishing, longterm yield and profit

Maximum Sustainable Yield (MSY)

- 2013 adoption of MSY within reformed CFP
- By 2015 (2020 latest)
- MSY=Trade-off between population growth and mortality
- Management controls F not SSB
- Target therefore $\mathrm{F}_{\mathrm{MSY}}$

Lowestoft: 1950s 1970se/f Cefas

ICES gives advice in relation to:

- existing management plans (MP)
- high long-term yield (MSY)
- precautionary limits (PA)
- mixed fisheries \& the ecosystem

Safe biological limits

Selected example of the state of stocks and advice

- Large downward revision in final 2 years in all areas
- No recovery in the southern area in the mid 2000s.

Cod in North Sea, eastern English Channel and Skagerrak

- Large reduction in fishing pressure
- State of the ecosystem affecting the stock
- Low recruitment last ~15 years
- Increasing water temperatures making parts of the North Sea less suitable for cod in recent years

An EU multiannual management plan (MAP) has been agreed by the EU for this stock (EU, 2018). This plan is not adopted by Norway, thus not used as the basis of the advice for this shared stock. ICES was requested by the EC to provide advice based on the MSY approach and to include catch scenarios for the MAP. EU-Norway have requested an evaluation of multiple management strategies (ICES 2019b), which are currently under consideration.

ICES advice on fishing opportunities

ICES advises that when the MSY approach is applied, catches in 2020 should be no more than 10457 tonnes.

ICES advice on fishing opportunities

Please note: The present advice replaces the advice given in June 2019 for catches in 2020.

ICES advises that when the MSY approach is applied, catches in 2020 should be no more than 13686 tonnes.

Stock and exploitation status

ICES assesses that fishing pressure on the stock is above $\mathrm{F}_{\text {MSY, }} \mathrm{F}_{\mathrm{pa}}$ and Flim; spawning stock size is below MSY $\mathrm{B}_{\text {trigger, }} \mathrm{B}_{\mathrm{pa}}$, and Blim.

Table 1 Cod in Subarea 4, Division 7.d, and Subdivision 20. State of the stock and fishery relative to reference points.

	Fishing pressure					Stock size				
		2016	2017		2018		017	2018		2019
Maximum sustainable yield	$\mathrm{F}_{\text {MSY }}$	*	*	*	Above	MSY $B_{\text {trigger }}$		x		Below trigger
Precautionary approach	$\mathrm{F}_{\mathrm{pa}} \mathrm{F}_{\text {lim }}$	-	-	x	Harvested unsustainably	$\mathrm{B}_{\text {pa' }} \mathrm{B}_{\text {lim }}$		*		Reduced reproductive capacity
Management plan	$\mathrm{F}_{\text {MGT }}$	-	-	-	Not applicable	$\mathrm{B}_{\text {MGT }}$	-	-		Not applicable

Centre for Environment Fisheries \& Aquaculture Science

Published 28 June 2019

Reference points

Table 5
Cod in Subarea 4, Division 7.d, and Subdivision 20. Reference points, values, and their technical basis. All weights are in tonnes.

Framework	Reference point	Value	Technical basis	Source
MSY approach	MSY $\mathrm{B}_{\text {triger }}$	150000	B_{pa}	ICES (2017)
	FMSY	0.31	EQsim analysis based on the recruitment period 19882016.	ICES (2017)
Precautionary approach	$\mathrm{B}_{\text {lim }}$	107000	SSB associated with the last above-average recruitment (1996 year class).	ICES (2017)
	B_{pa}	150000	$\mathrm{B}_{\text {lim }} \times \exp (1.645 \times 0.2) \approx 1.4 \times \mathrm{B}_{\text {lim }}$	ICES (2017)
	$\mathrm{F}_{\text {lim }}$	0.54	EQsim analysis based on the recruitment period 19982016.	ICES (2017)
	F_{pa}	0.39	$\mathrm{F}_{\text {lim }} \times \exp (-1.645 \times 0.2) \approx \mathrm{F}_{\text {lim }} / 1.4$	ICES (2017)
EU Management Plan (MAP) EU (2018)	MAP MSY Btrigeer	150000	MSY Btrigger	ICES (2017)
	MAP B ${ }_{\text {lim }}$	107000	$\mathrm{Bl}_{\text {lim }}$	ICES (2017)
	MAP FMSY	0.31	$\mathrm{F}_{\text {MSY }}$	ICES (2017)
	MAP range $\mathrm{F}_{\text {lower }}$	0.198-0.31	Consistent with ranges provided by ICES (2017), resulting in no more than 5\% reduction in long-term yield compared with MSY.	ICES (2017)
	MAP range $\mathrm{F}_{\text {upper }}$	0.31-0.46	Consistent with ranges provided by ICES (2017), resulting in no more than 5\% reduction in long-term yield compared with MSY.	ICES (2017)

Catch scenarios
Table 2 Cod in Subarea 4, Division 7.d, and Subdivision 20. Assumptions made for the interim year and in the forecast. All weights are in tonnes and recruitment is in thousands.

Variable	Value	Notes
$\mathrm{F}_{\text {ages 2-4 }}$ (2019)	0.50	Average exploitation pattern (2016-2018) with median total catch in 2019 set equal to the TAC in 2019.
SSB (2020)	83301	Short-term forecast.
$\mathrm{R}_{\text {age } 1 \text { (}}$ (2019)	184342	Median recruitment estimated from the assessment in 2019.
$\mathrm{R}_{\text {age } 1}$ (2020)	183205	Median recruitment resampled from the years 1998-2018.
Total catch (2019)	35358	Median catch based on TAC in 2019.
Wanted catch (2019)	29769	Assuming 2018 wanted catch fraction by age.
Unwanted catch (2019)	5589	Assuming 2018 unwanted catch fraction by age.

Table 3
Cod in Subarea 4, Division 7.d, and Subdivision 20. Annual catch scenarios. All weights are in tonnes.

Basis	Total catch (2020)	Wanted catch * (2020)	Unwanted catch * (2020)	$\begin{aligned} & F_{\text {total }} \\ & (2020) \end{aligned}$	$\begin{aligned} & F_{\text {wanted }} \\ & (2020) \end{aligned}$	$F_{\text {unwanted }}$ (2020)	$\begin{gathered} \text { SSB } \\ (2021) \end{gathered}$	$\begin{gathered} \text { \% SSB } \\ \text { change } \\ \text { ** } \end{gathered}$	\% TAC change ***	\% Advice change ${ }^{\wedge}$
ICES advice basis										
MSY approach: SSB (2021) $=$ B $_{\text {lim }}$	13686	10881	2805	0.170	0.131	0.039	107000	28	-61	-51
Other scenarios ^^^										
MSY approach: $\mathrm{F}_{\text {MSY }} \times \text { SSB (2020) }$ /MSY Btrigger	13820	10986	2834	0.172	0.132	0.040	106871	28	-61	-51
$\begin{aligned} & \hline \mathrm{F}=\mathrm{MAP}^{\wedge \wedge} \\ & \mathrm{F}_{\text {MSY-lower }} \times \text { SSB }(2020) / \mathrm{M} \\ & \text { SY B }_{\text {triger }} \\ & \hline \end{aligned}$	9046	7196	1850	0.110	0.085	0.025	111678	34	-74	-68
$\mathrm{F}=0$	0	0	0	0.00	0.00	0.00	121366	46	-100	-100
F_{pa}	28689	22756	5933	0.39	0.30	0.090	91399	9.7	-18.9	1.72
$\mathrm{F}_{\text {lim }}$	37587	29717	7870	0.54	0.42	0.125	82448	-1.02	6.3	33
SSB (2021) = $\mathrm{Bl}_{\text {lim }}$	13686	10881	2805	0.170	0.131	0.039	107000	28	-61	-51
SSB (2021) = B_{pa}	0	0	0	0.00	0.00	0.00	121366	46	-100	-100
SSB (2021) = MSY $\mathrm{B}_{\text {trigger }}$	0	0	0	0.00	0.00	0.00	121366	46	-100	-100
TAC (2019) - 20\%	28286	22428	5858	0.38	0.30	0.088	91851	10.3	-20.0	0.29
TAC (2019) - 15\%	30053	23840	6213	0.41	0.32	0.095	89893	7.9	-15.0	6.6
TAC (2019) - 10\%	31821	25186	6635	0.44	0.34	0.102	88282	6.0	-10.0	12.8
TAC (2019) - 5\%	33589	26579	7010	0.47	0.36	0.108	86473	3.8	-5.0	19.1
Constant TAC	35358	27966	7391	0.50	0.38	0.116	84777	1.77	0.00	25
TAC (2019) + 5\%	37125	29361	7764	0.53	0.41	0.123	82906	-0.47	5.0	32
TAC (2019) + 10\%	38893	30719	8174	0.56	0.43	0.130	81220	-2.5	10.0	38
TAC (2019) + 15\%	40661	32043	8618	0.60	0.46	0.137	79538	-4.5	15.0	44
TAC (2019) + 20\%	42429	33345	9084	0.63	0.48	0.145	77831	-6.6	20	50
$\mathrm{F}=\mathrm{F}_{2019}$	35291	27914	7377	0.50	0.38	0.116	84852	1.86	-0.187	25
$\mathrm{F}=\mathrm{F}_{\text {MSY }}$ lower	15718	12497	3221	0.198	0.152	0.046	105041	26	-56	-44
$\mathrm{F}=\mathrm{F}_{\text {MSY }}$	23558	18688	4870	0.31	0.24	0.072	96848	16.3	-33	-16.5

* "Wanted" and "unwanted" catch are used to describe fish that would be landed and discarded in the absence of the EU landing obligation, based on discard rate estimates for 2018.
** SSB 2021 relative to SSB 2020.
${ }^{* * *}$ Catch in 2020 relative to TAC in 2019: North Sea (29 437 t) + Skagerrak (4205 t) + Eastern English Channel (1715 t) = 35357 t .
${ }^{\wedge}$ Total catch 2020 relative to advice value 2019 (28 204 t).
$\wedge \wedge$ EU multiannual plan (MAP) for the North Sea (EU, 2018).
$\wedge \wedge \wedge$ Other scenarios do not include $F_{\text {MSY upper }}$ because $\operatorname{SSB}(2020)<$ MSY $\mathrm{B}_{\text {trigger }}$.
5.7.1 should not be more than 13,686 and 10,881 tonnes, respectively. The Delegations noted that according to the latest ICES assessment the stock is at a low level. ICES consider the biomass to be below $\mathrm{B}_{\mathrm{lim}}$. The fishing mortality has seen a major decline since 2001, but has been increasing since 2016 and it is since 2018 above Flim.
5.7.2 The Delegations pointed out that ICES in its basis for advice assumes unwanted catches, including discards in 2018 to be 46% of total catch in numbers corresponding to 16% in biomass. In the catch option table for 2019, ICES present levels of unwanted catches to be around 21% of total catch.
5.7.3 The Delegations noted that the cod assessment during recent years (since 2017) faces some challenges. These challenges have resulted in a downscaling of spawning stock biomass (SSB) and an upward revision of the fishing pressure (F) in the assessment. The Delegations therefore agreed to underline the relevance of the process that ICES is going to launch in 2020 with the purview of carrying out an assessment benchmark for cod in 2021, and for which the relevant scientific support should be made available.
5.7.4 The Delegations agreed to establish a TAC in 2020 of 17,679 tonnes for cod in Subarea 4, Division 7.d, and Subdivision 20 (North Sea, Eastern English Channel, Skagerrak). This constitutes a decrease of 50% compared to the TAC in 2019.
5.7.5 The Delegations agreed that the resulting TAC for ICES Subarea 4 (North Sea) is 14,718 tonnes and the TAC in Subdivision 20 (Skagerrak) is 2,103 tonnes.
5.7.6 The EU Delegation informed the Norwegian Delegation of its intention to base its TAC in 2020 according to a traditional approach and yearly agreed split, resulting in a TAC for cod in ICES Div. 7.d. (Eastern Channel) of 858 tonnes.

On cod in the North Sea (United Kingdom)

The United Kingdom is committed to the use of the best scientific advice and available evidence to inform sustainable stock management decisions. Cod is widely distributed throughout the North Sea, but there are now indications of differences that have developed over a period of time in the abundance of cod throughout the North Sea. Any implications of these differences for advice and management decisions are not clear and so the United Kingdom urges that work commence immediately to improve overall understanding of the impacts such differences may have on the scientific advice that is generated by ICES. This work should be completed so that it can inform negotiations and management decisions next year.

December 2019: Council of/7 Centre for Environment Fisheries \& Aquaculture Science

Food webs and more

- Cefas

Centre for Environment Fisheries \& Aquaculture

Mixed fisheries approach Science

